Serendip is an independent site partnering with faculty at multiple colleges and universities around the world. Happy exploring!

activities for teaching biology

Why do some plants grow in odd shapes?

In this analysis and discussion activity, students investigate several examples of plants that have grown in odd shapes.

As students analyze these anchoring phenomena, they learn (1) how the zones of cell division and elongation contribute to the growth of stems and roots; (2) how the effects of a plant hormone on cell elongation contribute to plant responses to light and gravity; and (3) how differentiated cells (xylem cells, phloem cells and photosynthetic cells) cooperate to supply all parts of the plant with needed molecules and ions.

In this activity, students interpret data from scientific studies, develop and refine scientific models, and answer additional analysis and discussion questions.

This activity can be used in a unit on cells or as an activity on development after students learn about cell division.

Melanoma, Mutations and Abnormal Cell Cycles

This minds-on, analysis and discussion activity introduces students to basic cancer biology, somatic mutations, and regulation of the cell cycle. After students view an introductory video about a teen with melanoma, they complete five sections: “What is melanoma?”, “How does a melanoma develop?”, “Why do melanoma cells divide too much?”, “Genes, Environment and Melanoma”, and a final section in which students summarize their major conclusions about melanoma and learn which of these conclusions generalize to other types of cancer.

How Whales Evolved – Evidence and Scientific Arguments

Students begin by comparing the characteristics of whales, mammals and fish to decide whether whales should be classified as mammals or fish. To support their conclusion, students make a scientific argument (claim, evidence, reasoning).

Students learn about the evolution of whales and other cetaceans by analyzing evidence from comparative anatomy, embryology, fossils, and DNA and proteins. Finally, students make a scientific argument for the claim that whales and other cetaceans evolved from land mammals.

Gene Editing with CRISPR-Cas – A Cure for Severe Sickle Cell Anemia?

This analysis and discussion activity introduces Victoria Gray whose severe sickle cell anemia was effectively treated by experimental gene editing with CRISPR-Cas. To begin, students review the molecular biology of sickle cell anemia.

Next, they learn how bacteria use CRISPR-Cas to defend against viral infections.

Then, students analyze some of the research findings that scientists used to identify the target for gene editing, and they analyze the CRISPR-Cas gene editing treatment for sickle cell anemia.

The Teacher Notes present an optional additional video and question to stimulate students to consider the ethical controversies related to potential uses of CRISPR-Cas.

COVID-19 Vaccines – How do they work?

Graphs of antibody responses after exposure to coronavirus

Students learn that vaccination or a previous coronavirus infection reduces the risk of severe Covid-19.

They learn how the immune system responds to a coronavirus infection and analyze how this response differs after a first vs. second exposure to the coronavirus.

Then, students analyze the biological effects of an mRNA vaccine and develop an evidence-based explanation of how vaccination protects against severe Covid-19.

The Genetics of Sickle Cell Anemia and Sickle Cell Trait – How One Gene Affects Multiple Characteristics

In this activity, students analyze information about the molecular and cellular basis for sickle cell anemia and sickle cell trait. This provides the basis for understanding how a single gene can affect multiple phenotypic characteristics.

Students also create a Punnett square, analyze a pedigree, and evaluate the relative advantages of Punnett squares and pedigrees as models of inheritance.

The Teacher Notes include several optional questions which apply student understanding of the biology of sickle cell trait to practical and policy issues.

Genetics and Probability – Sex Ratios of Births

In this minds-on analysis and discussion activity, students analyze the inheritance of sex chromosomes. Students use a Punnett square to predict the sex ratio of births and compare their prediction to data for individual families and for the entire US.

As students analyze the reasons why many real families deviate from Punnett square predictions, they learn about the probabilistic nature of inheritance and the limitations of Punnett square predictions.

A mistake in copying DNA can result in dwarfism.

In this minds-on activity, students analyze evidence about achondroplasia to learn how a mistake in DNA replication can result in a new mutation that affects a child’s characteristics.

This analysis and discussion activity reviews several basic genetics principles and helps to counteract several common misconceptions about genetics.

Introduction to Genetics – Similarities and Differences between Family Members

To begin this activity, students propose a hypothesis about how genes contribute to the similarities and differences in appearance of family members. Students repeatedly refine their hypothesis as they learn more.

Students learn that different versions of a gene give the instructions for making different versions of a protein which can result in different characteristics. Next, students review how genes are transmitted from parents to offspring through the processes of meiosis and fertilization. Then, students analyze several examples that illustrate how inheritance of genes can result in family resemblance and/or differences.

Concepts covered include Punnett squares, dominant and recessive alleles, incomplete dominance, and polygenic inheritance.

Mitosis and the Cell Cycle – How the Trillions of Cells in a Human Body Developed from a Single Cell

In this minds-on analysis and discussion activity, students learn how the cell cycle produces genetically identical daughter cells. They analyze how DNA replication and mitosis work together to ensure that each new cell gets a complete set of chromosomes with a complete set of genes.

To understand how a single cell (the fertilized egg) can develop into the trillions of cells in a human body, students analyze an exponential growth model for the increase in number of cells. The final section provides a brief introduction to cellular differentiation.

This activity can be used as an introduction to mitosis or to reinforce understanding of mitosis. A hands-on version of this activity is available as “Mitosis and the Cell Cycle – How a Single Cell Develops into the Trillions of Cells in a Human Body”.

Syndicate content