Serendip is an independent site partnering with faculty at multiple colleges and universities around the world. Happy exploring!

I'm Not Drunk, I Have Ataxia

Claire Ceriani's picture

Muscular dystrophy and multiple sclerosis are probably the two most well-known movement disorders.  As a result, they have received a lot of research funding, enabling medicine to move closer to finding effective treatments and cures.  There is a movement disorder, however, that is just as serious, but often neglected.  Ataxia is a movement disorder that makes patients’ lives extremely difficult, yet is unheard of by many people.  As a result, research into treatments is significantly far behind.  Awareness of ataxia must be increased in order to drive the research that will improve the lives of its sufferers.
 

The word ataxia comes from the Greek “a taxis,” meaning “without order” (1).  Ataxia is a disease in which a person’s movement is uncoordinated.  The severity varies from case to case, but all forms of ataxia are characterized by difficulty in controlling balance and movement.  The most obvious symptom of ataxia is an unbalanced gait that often gives people the appearance of being intoxicated.  People with the condition often walk with their feet further apart than is typical in what is clinically called a “broadened base” (2) to compensate for poor balance.  Ataxia may also affect the coordination of the hands and fingers, resulting in poor fine motor skills such as writing.  Speech may be slurred and eye movements may be slower than normal, leading many people to believe that people with ataxia are mentally retarded.  More sever forms of ataxia may cause serious swallowing and respiratory problems (1).
 

Ataxia may be caused by infections, injuries, or genetic factors that cause degenerative changes in the central nervous system.  Those forms caused by disease or injury are known as sporadic ataxia and are not very common.  The more usual forms of ataxia are hereditary and may be either dominant or recessive.  The relevant genes are located on autosomal chromosomes and so affect males and females equally.  Dominantly inherited ataxias are usually less severe, and most people do not show symptoms until their twenties or thirties, or even as late as their sixties.  Recessively inherited ataxias, such as Friedreich’s Ataxia (FA), are more serious and usually begin during childhood.  They are more degenerative than dominant and sporadic ataxias and are more likely to lead to death.  FA in particular is associated with serious cardiac problems (1).
 

All forms of ataxia affect the cerebellum, the part of the brain controlling balance and coordination.  Ataxias that are pure cerebellar only affect balance and coordination.  Some forms may also affect the basal ganglia and the spinal cord.  These forms are referred to as cerebellar plus ataxia or spinocerebellar ataxia and may cause neuropathy (dysfunction of the peripheral nervous system), dementia, weakness, rigidity, and spasticity (1).
 

Until fairly recently, ataxia was thought to be strictly a movement disorder.  Further studies have shown that more advanced cases may have cognitive and emotional effects.  The cerebellum, once thought to deal solely with movement, is now understood to be involved in many processes within the brain.  It contains more neurons than the rest of the brain combined, and processes information faster than any other part of the brain.  It is connected to the cerebral cortex by an estimated forty million nerve fibers, receiving information from sensory, motor, cognitive, language, and emotional areas (3).  In addition to motor functions, the cerebellum helps control skilled mental performance, sensory acquisition, discrimination and categorization, tracking, prediction, and task sequences (4).  As a result, any damage to the cerebellum may result in impaired memory of newly learned information and procedures, and problems with “executive functions” such as planning and keeping thoughts in the proper order.  Patients may also experience an increase in irritability, anxiety, and depression (2).
 

The part of the cerebellum most affected by ataxia is the layer of Purkinje cells.  Each fold or “folium” of the cerebellum can be separated into three layers, the middle of which is made up of large, flat neurons called Purkinje cells.  These cells are essential for relaying information within the cerebellum.  They have highly branched dendrites that receive hundreds of thousands of inhibitory and excitatory impulses to process.  Their myelinated axons extend through the white matter to synapse with the central nuclei of the cerebellum, the only cortical neurons to do so.  They are responsible for processing efferent impulses from the motor cortex (5).  It is when these cells die or become damaged that the cerebellum is unable to function properly.
 

Drug treatments do exist for ataxia, but they have been largely unsuccessful so far.  A few forms of ataxia are linked to deficiencies of vitamin E and coenzyme Q10.  Drug treatments have proven effective for these types, but such ataxias are very rare and less serious than the more prevalent ones (2).  Amantadine has been shown to slow the progress of ataxia in some people and to increase energy levels, though the results do not appear to apply to the entire ataxia population (2).  In addition, GABAergic agents may reduce cerebellar tremors, but are not effective for treating ataxia symptoms as a whole (2).
 

Genetic studies have brought further insight into the causes of hereditary ataxia, but are still a long way from developing treatments.  In 1993, the first gene, Spinocerebellar Ataxia Type 1, or SCA-1, was identified by researchers at the University of Minnesota and Baylor College of Medicine.  This gene is linked to certain dominant forms of ataxia.  Located on chromosome six, this particular gene appears to cause ataxia when repetitions of the CAG codon are above forty (6).  More repetitions are linked to earlier onset.  Genes through SCA-28 have been found since then, suggesting that it may take the combined influence of several genes to trigger the onset of ataxia (1).  Fewer genes have been discovered for recessive ataxia, though one has been found that suggests treatment possibilities for FA.
 

In one study, a number of proteins linked to ataxia were tagged.  Many of these proteins revealed cellular pathways that may lead to Purkinje cell death if misfolded due to genetic mutations (7).  Another study successfully reactivated the frataxin gene in a cell culture, a gene that is often deactivated in patients with FA (8).  Though this is still a long way from a cure, this achievement suggests that it may be possible to use a virus vector in stem cells or to develop a pill that will reactivate the frataxin gene in people with FA.
 

The area of research that currently holds the most promise is the controversial idea of stem cells.  If it were possible to grow new cerebellar neurons, particularly Purkinje cells, it would be possible to treat all forms of ataxia.  Unfortunately, viable neurons have not been successful grown from adult stem cells.  Embryonic stem cells have to ability to differentiate into any type of cell, but adult stem cells have more limited capabilities.  Ethical concerns hold back much of the research on embryonic stem cells, so more focus is on adult stem cells.  Stem cells do exist within the adult hippocampus which, given the proper chemical signal, can differentiate into different types of neurons, however the chemical signal for Purkinje cells in not currently known.  Purkinje cells develop when the embryo is roughly ten days old and do not typically develop any more after that, making it very difficult to force adult stem cells to differentiate into them (1).
 

Another problem is that stem cells must be genetically similar to the host to prevent rejection.  One solution is to use cells from a sibling, specifically cord blood from an infant, which is full of stem cells, but there is only a one in four chance that the major immune determinant genes will be the same (9).  The better, though more controversial, method is therapeutic cloning.  In this procedure, the patient’s DNA is transferred to one of her own egg cells (or his or her mother’s).  This egg is then grown as a “synthetic embryo” and harvested for stem cells (9).  The problem is that the cells would still have the original mutation, and, with the exception of the frataxin gene, it is not yet known how to correct these mutations.  This is an area that must be further explored before a cure can be created.
 

Stem cell research has given way to a still experimental treatment for one type of ataxia.  In 2005, Angie McDonald, a sufferer of FA, underwent the first stem cell treatment for ataxia (10).  The treatment consisted of injecting stem cells from umbilical cords into the bloodstream and the base of the skull.  Though the procedure did not eliminate her symptoms, it did decrease their severity and gave her more energy.  In an interview with BBC news a year later, she said the effects were wearing off, but she planned to receive another treatment (11).  Though this is still very new and by no means a cure, it may be possible in the coming years that more forms of ataxia will at least be treatable by this method.
 

Research on ataxia is highly under-funded as most governments place it low on the priority list.  Very few people have even heard of the disease, including many medical professionals.  Though the disease in uncommon (approximately 15,000 Americans have it (1)), it is much more prevalent than was once believed.  Many people have been misdiagnosed by their physicians, because it is so often forgotten as a possibility.  Because of the ignorance of the public, many people with ataxia suffer prejudice.  The unbalanced gait of ataxia gives people the appearance of being drunk.  Police officers often do not accept ataxia as a valid reason for failing motor control tests, because so few have heard of it.  Many people with ataxia must wear medical alert tags to prove that they actually have a medical condition (12).  Children in particular suffer from the stigmas of ataxia.  Since it so often goes undiagnosed in children, they may be scolded for sloppy handwriting and clumsiness mistaken for carelessness.
 

In order to educate the public about ataxia and the importance of research, International Ataxia Awareness Day (13) was created.  This day, September 25th, is intended to teach people about ataxia and to encourage them to donate to ataxia research.  Nearly all research done on ataxia so far has been funded by volunteers, because governments give so little support.  Volunteers are also needed to donate money for specialized computers, communications and mobility aids, and home adaptations.
 

Ataxia needs to be recognized for the serious disease it is.  More effort should be made to educate the public about this condition.  Emphasis on this disease will help encourage donations to support research on an often neglected illness that is, nevertheless, still a serious problem for many people.  As stem cell research progresses, more ways are found to use adult stem cells, rather than embryonic stem cells.  This research must continue so that safe, ethical treatments and cures can be developed for this debilitating disease.

Web Resources
1. http://www.ataxia.org/; National Ataxia Foundation official website

2. http://www.hopkinsneuro.org/disease_and_condition_detail.cfm?condition_id=59; Ataxia, Johns Hopkins website

3. http://www.newhorizons.org/neuro/leiner.htm; “The Treasure at the Bottom of the Brain” by Henrietta C. Leiner and Alan L. Leiner, New Horizons for Learning

4. http://thalamus.wustl.edu/course/cerebell.html; Basal Ganglia and Cerebellum, Neuroscience Tutorial from the Washington University School of Medicine

5. http://www.bioeng.auckland.ac.nz/anatml/anatml/database/cells/cells/parts/part/part_28.html; Body Part—Purkinje Cell, The University of Auckland: Bioengineering Institute

6. http://www.euro-ataxia.org/newsletter/eanews04.pdf; Euro-Ataxia Newsletter No. 4, www.euro-ataxia.org

7. http://www.ninds.nih.gov/news_and_events/news_articles/news_article_ataxia_interactome.htm; “Organized Protein Network Discovered in the Ataxias” by Paul Girolami, National Institute of Neurological Disorders and Stroke

8. http://www.physorg.com/news75390393.html; “Researchers reverse Friedreich’s Ataxia defect in cell culture” from August 21 2006, www.physorg.com

9. http://www.ataxia.org.uk/publications_and_pictures/stem_cells.pdf; “Stem Cell Research and Ataxia” by Prof. Bob Williamson of the University of Melbourne, www.ataxia.org.uk

10. http://news.bbc.co.uk/2/hi/uk_news/england/merseyside/4527744.stm; “Ataxia sufferer’s stem cell hope,” BBC News 14 December 2005

11. http://news.bbc.co.uk/2/hi/uk_news/england/merseyside/6188905.stm; “Stem cell patient plans for more,” BBC News 18 December 2006

12. http://www.fortnet.org/fapg/drunk.htm; Are You Drunk?, personal stories of people with ataxia

13. http://www.ataxiaawarenessday.org/; Ataxia Awareness Day official website

Comments

jack  batcheller's picture

ataxia, paraneoplastic syndrome

My wife diagnosed with lung cancer 4 years ago, recieved chemo radiation and has been in remision, before her diagnose she started having seizures, which put her in hospital they could not control them for 30 days, gave her all kinds of anti convulsant drugs. and at this time still takes both Keppra and tegritol, Dr said siezures were caused by cancer antibodies destroying good cells , neroligist labled her ataxic {paraneoplastic syndrome} said was probably damage to cerebellum on the celular level, they did try imune globlin therapy. Her current condition is, unable to keep balance , has movment in eyes, she can walk short distances with mt assistance, she gets tired easily . has good appitite, has some trouble with memory, confined to wheel chair., has dizzy spells. It seems like nerologists dont really know what to do guess there is nothing to do. they said her condition was very rare, she spent 3 months in hospital. I guess I am just rambeling on, I just know it is a devistating thing for someone who used to be very active. At one time nerology doc said we just dont deal with complicated cases so who does, no one, like no one is interested in a cure, I care for her 24/7 and pray alot just wanted to talk to someone thnks for listening

anna martin's picture

child showing symptoms of ataxia

can anyone point me in the right direction my son who is 5 is displaying the symptoms of ataxia but the doctors cannot pin down what type of ataxia . from what i can understand there are not that many forms that surface this early on. he has had:
eeg
hearing checked
balance checked
opthalmic surgeon examination
some genetic blood tests inc friedriechs ataxia test
mri scan

and to avail
my problem with the not knowing is that while we dont have a name there can be no attempt to administer anything to him that might slow it down.

he walks like he is drunk
he falls continuously
his balance is terrible
he needs to hold on to someone on stairs
he sometimes rolls his eyes upwardly when he is talking

i have eight kids ,i feel i would like to know exactly what this is to see if any of the rest of my kids are suffereing from the same thing although none are displaying any of those symptoms however one of his older brothers started when he was about 3 displaying this but was great after about a year.

many thanks for your time to read this and if you can help please help

any pointers would be appreciated.

SerendipElena 's picture

Imbalance in child

I would take him to dr. Pranzatelli ( all data in goggle ) to rule out "opsoclonus mioclonus syndrome" that has several therapeutic approaches. All the best for your child.

Anonymous's picture

take him to mayos

take him to mayos

Tisha's picture

hi there..

I was searching and I've found this link bout that disease...
it described the three types of ataxia...hope it would be of use for you...
http://www.mult-sclerosis.org/ataxia.html

I'm really sorry for your son...so young..it must be hard for both of you...
now he needs you to be his side more than ever and to be stronger..I know it must be so hard for you but remember you'r enot alone...I really hope that one day the cure for that disease becomes real...I wish I could be of help..but all i can do is support you and your son from afar and praying for a miracle...
please I want you to keep in touch I really want to give my support...
here's my mail...Ttish@sapo.pt feel free to talk...
well,I'm 20 yers old..a girl..I've found out bout that disease in a japanese movie..a japanese young girl with 15years old had the same disease..I was so moved
and felt and tell to myself even though I can't give the cure at least I can support...God bless you all!!**kisses...

KK's picture

SCA

I found out 2 years ago I have SCA type 18. Im 39 and I one day I was fine then, got clumbsy everybody thought i was drunk, but I wasnt. I know my mom and my boyfriend was very patient w/ me after they reliazed i was not a drunk or a pill popper. Noone knows I how it feels to have something like this so they couldnt possiblity understand I would like to know if there is anyone who i could talk with that understands just how it feels,,,,, or any type of message board so i could talk to people who understand how we feel to look walk, talk like a drunk but be perfectly sober.........Thank You

Anonymous's picture

Ataxia and appearing drunk

I cannot do much at night because we rely on our eyesight for balance. I too would appear drunk when totally sober. It bothers me because I am an otherwise well fit, attractive 40 plus male.

In a recent incedent, 911 was called at 1:30 am because I appeared drunken going into a grocery store and requiring a cart to replace my eye inputs.

It is most perplexing and often embarassing and I will not be going to any further High School reunions.

You have three senses that control your ballance, Eyes, ear silia and proprioception. As an ataxic person we are void of proprioception input and rely on visual and inner ear.

Myself, in low lighting must hold onto something, touch something and otherwise generate a cause and effect for my brain to talk to my legs.

Please advise. In fact if have received any other comments, please forward them.

Sincerely, Stephen

connie's picture

balance

I started physical therapy at my ENT doc's office. They gave me a vng test, before all the neurology reports showed up. I do physical therapy 4 times a week; two of those in warm water therapy pool. Two in the dr. office. It really helps alot. But its work. Just like any other physical therapy, it is work. Worth it. Very worth it. I was a hiker and back packer for years, 10 out of 12months. Played softball, danced, rode my bike etc. I can't now. I can walk better and balance much more so due to physical tx.
Good luck and many blessings.
connie in loveland

Kevin Donnelli's picture

I have ataxia and the only

I have ataxia and the only piece of advise is Try to not let the bad stuff in focus on the positives.

carl gilmore's picture

personal

I have ataxia just wanted to say I understand

Serendip Visitor's picture

ataxia while back

I was told I have ataxia at a emergency hospital. Says I have ataxia and I will see like a television going of the air
like the snow on the tv. And to check into a nursing home and get use to it.

Looked around for one and my neurologist said no also have epilepsy.

So all 7 years nothing.
Thought it was just the eyes.
Now my new neuro said I do have it the first time I saw him.

So I have the gait,headaches,dizziness,and once blurriness where I could not see but could see on sides but a few hours
and back to normal.

June 26 2009 I found out the meaning of the word ataxia and then I knew for sure.....went for months with all these symptoms

But saw my doc. and forgot to tell him.
So next time I will make sure
but he tells me I have ataxia

What is next do I need to do until I see my doctor?