Serendip is an independent site partnering with faculty at multiple colleges and universities around the world. Happy exploring!

Remote Ready Biology Learning Activities

Remote Ready Biology Learning Activities has 50 remote-ready activities, which work for either your classroom or remote teaching.

 

Introduction to Biology Diffusion

Cell Division and Genetics Genealogy

Molecular Biology DNA

Evolution and Diversity Natural Selection

Human Physiology Runner

Download all of the PDFs in a zipped archive. (Caveat: file size is about 34MB and will take a while if you're using a modem.)

More Minds-on Activities!

Additional Activities

Subscribe to our listserv to receive notices when we post new activities or significant revisions

Hands-on Activities for Teaching Biology to High School or Middle School Students

by Drs. Ingrid Waldron and Jennifer Doherty, University of Pennsylvania

The expression "hands-on, minds-on" summarizes the philosophy we have incorporated in these activities -- namely, that students will learn best if they are actively engaged and if their activities are closely linked to understanding important biological concepts. For example, it is helpful to use hands-on models to engage student interest and foster multiple modality learning, but it is crucial to closely link the modeling activity to student understanding of the actual biological processes. To accommodate limited budgets, most of our activities can be carried out with minimum equipment and expense for supplies.
Read More

Additional resources for teaching biology are available at http://serendipstudio.org/exchange/bioactivities.  These teaching resources include discussion activities, games, web-based activities and overviews of important biological topics, including major concepts, common misconceptions, and suggested learning activities.

Introduction to Biology Diffusion

Is Yeast Alive?

Students evaluate whether the little brown grains of yeast obtained from the grocery store are alive by testing for metabolism and growth.

Download Student Handout: PDF format or Word format

Download Teacher Preparation Notes: PDF format or Word format

View and submit comments

Alcoholic Fermentation in Yeast (revised, October, 2011)

Students learn about the basics of aerobic cellular respiration and alcoholic fermentation and design and carry out experiments to test how variables such as sugar concentration influence the rate of alcoholic fermentation in yeast.  In an optional extension activity students can use their yeast mixture to make a small roll of bread.

Download Student Handout: PDF format or Word format

Download Teacher Preparation Notes: PDF format or Word format

View and submit comments

Moldy Jell-O

Students design experiments to determine how substrate and environmental conditions influence growth of common molds. Students carry out their experiments, analyze and interpret their evidence, and prepare a report.

Download Student Handout: PDF format or Word format

Download Teacher Preparation Notes: PDF format or Word format

View and submit comments

Enzymes Help Us Digest Food(revised, August, 2012)

Experiments with the enzyme lactase and discussion questions help students to learn about enzyme function, enzyme specificity, and the molecular basis of lactose intolerance. Students also learn about the scientific method by interpreting evidence to test hypotheses and designing the second and third experiments to answer specific scientific questions about lactase. (An alternative version of the Student Handout gives specific instructions for all three of the experiments.)

Download Student Handout: PDF format or Word format

Download Teacher Preparation Notes: PDF format or Word format

View and submit comments

A Scientific Investigation – What types of food contain starch and protein?(new, July, 2013)

Students learn about scientific investigation by carrying out key components of the scientific method, including developing experimental methods, generating hypotheses, designing and carrying out experiments to test these hypotheses and, if appropriate, using experimental results to revise the hypotheses. Students design and carry out two experiments which test whether starch and protein are found in some or all foods derived from animals or plants or both.

Download Student Handout: PDF format or Word format

Download Teacher Preparation Notes: PDF format or Word format

View and submit comments

Who Took Jerell’s iPod? -- An Organic Compound Mystery(revised, November, 2012)

In this activity, students learn how to test for triglycerides, glucose, starch, and protein and then use these tests to solve a mystery. The activity reinforces students understanding of the biological functions and food sources of these different types of organic compounds.

Download Student Handout: PDF format or Word format

Download Teacher Preparation Notes: PDF format or Word format

View and submit comments

Diffusion across a Selectively Permeable Membrane (revised, July, 2011)

Students investigate the effects of molecule size on diffusion across a synthetic selectively permeable membrane (dialysis tubing) and discuss applications to understanding the selectively permeable cell membrane.This activity includes a demonstration of osmosis (diffusion of water across a selectively permeable membrane).

Download Student Handout: PDF format or Word format

Download Teacher Preparation Notes: PDF format or Word format

View and submit comments

Investigating Osmosis(revised, October, 2013)

In this activity, students review the basic process of osmosis, make predictions about the effects of osmosis, design an experiment to test these predictions, and carry out and interpret their experiment. The experimental setup is similar to the diffusion activity, but more focused on osmosis and designing experiments to test hypotheses.

Download Student Handout: PDF format or Word format

Download Teacher Preparation Notes: PDF format or Word format

View and submit comments

 

More Minds-on Activities

More Minds-on Activities for teaching biology are available at http://serendipstudio.org/exchange/bioactivities. These include overviews, discussion/worksheet activities, games, and web-based activities for learning and review.

 

Cell Division and GeneticsGenealogy

Mitosis, Meiosis and Fertilization (revised, December, 2013)

In this activity, students use model chromosomes to simulate the processes of mitosis, meiosis and fertilization, and they answer questions designed to promote understanding of these processes. To demonstrate the principle that genes are transmitted from parents to offspring through the processes of meiosis and fertilization, students follow two alleles of a gene through gametes to zygotes as they model meiosis and fertilization. Students also learn how a mistake in meiosis can result in Down Syndrome.

Download Student Handout: PDF format or Word format

Download Teacher Preparation Notes: PDF format or Word format

View and submit comments

Genetics (revised, December, 2013)

This activity helps students to understand basic principles of genetics, including relationships of genotype to phenotype, concepts of recessive and dominant alleles, and how understanding meiosis and fertilization provides the basis for understanding inheritance, as summarized in Punnett squares. The Student Handout includes an analysis of the inheritance of albinism that teaches all of these concepts, a Coin Toss Genetics activity that helps students understand the probabilistic nature of Punnett square predictions, and an analysis of the inheritance of sickle cell anemia that reinforces the basic concepts and introduces some of the complexities of genetics. The Genetics Supplement includes two additional activities, an analysis of student data on the sex makeup of sibships and pedigree analyses of recessive and dominant alleles with challenge questions that introduce the role of mutations and an evaluation of Punnett squares and pedigrees as models of inheritance.

Download Student Handout: PDF format or Word format

Download Genetics Supplement: PDF format or Word format

Download Teacher Preparation Notes: PDF format or Word format

View and submit comments

Dragon Genetics -- Independent Assortment and Gene Linkage (revised, January, 2010)

Students learn the principles of independent assortment and gene linkage in activities which analyze inheritance of multiple genes on the same or different chromosomes in hypothetical dragons. Students learn how these principles derive from the behavior of chromosomes during meiosis and fertilization.

Download Student Handout: PDF format or Word format

Download Teacher Preparation Notes: PDF format or Word format

View and submit comments

Dragon Genetics -- Understanding Inheritance(revised, August, 2012)

In this simulation activity students mimic the processes of meiosis and fertilization to investigate the inheritance of multiple genes and then use their understanding of concepts such as dominant/recessive alleles, incomplete dominance, sex-linked inheritance, and epistasis to interpret the results of the simulation. This activity can be used as a culminating activity after you have introduced classical genetics, and it can serve as formative assessment to identify any areas of confusion that require additional clarification.

Download Student Handout: PDF format or Word format

Download Teacher Preparation Notes: PDF format or Word format

View and submit comments

Using Blood Tests to Identify Babies and Criminals (revised, December, 2013)

Studentslearn the genetics and immunobiology of the ABO blood type system and use simple chemicals and logical reasoning to solve a murder mystery and to determine whether two babies were switched in the hospital. This activity introduces students to the concept of codominance; in the Teacher Preparation Notes we suggest an extension which you can use to introduce the concept of incomplete dominance and the difference between codominance vs. incomplete dominance.

Download Student Handout: PDF format or Word format

Download Teacher Preparation Notes: PDF format or Word format

View and submit comments

 

More Minds-on Activities

More Minds-on Activities for teaching biology are available at http://serendipstudio.org/exchange/bioactivities#mmfgenetics. These include overviews, discussion/worksheet activities, games, and web-based activities for learning and review.

 

Molecular BiologyDNA

DNA(revised, October, 2011)

In this activity, students extract DNA from their cheek cells and relate the steps in the procedure to the characteristics of cells and biological molecules.  Students learn key concepts about DNA structure and replication during the intervals required for the extraction procedure.  Alternatively, students can extract DNA from split peas while learning about DNA structure and replication.

Download Student Handout: PDF format or Word format

Download Teacher Preparation Notes: PDF format or Word format

View and submit comments

From Gene to Protein - Transcription and Translation (revised, February, 2014

In this hands-on activity students learn how a gene provides the instructions for making a protein, and how genes can cause albinism or sickle cell anemia. Simple paper models are used to simulate the molecular processes of transcription and translation. This activity can be used to introduce students to these topics or to reinforce student understanding. In addition, students evaluate the advantages and disadvantages of different types of models included in this activity.

Download Student Handout: PDF format or Word format

Download Teacher Preparation Notes: PDF format

View and submit comments

 

More Minds-on Activities

More Minds-on Activities for teaching biology are available at http://serendipstudio.org/exchange/bioactivities#molecbio. These include overviews, discussion/worksheet activities, games, and web-based activities for learning and review.

 

Evolution and Diversity Natural Selection

Evolution by Natural Selection (revised, July, 2013)

Principles of natural selection are demonstrated by a simulation that involves different color pom-poms and student feeders equipped with different types of feeding implements. Students analyze results to see how different traits contribute to fitness in different habitats. Additional examples and questions help students to understand the process of natural selection, including three necessary conditions for natural selection to take place.

Download Student Handout: PDF format or Word format

Download Teacher Preparation Notes: PDF format or Word format

View and submit comments

Some Similarities between the Spread of an Infectious Disease and Population Growth(revised, November, 2012)

A simple simulation demonstrates how spread of an infectious disease can result in exponential increase in the number of infected individuals. Discussion questions and a graphing activity develop student understanding of exponential and logistic population growth.

Download Student Handout: PDF format or Word format

Download Teacher Preparation Notes: PDF format or Word format

View and submit comments

What Parts of a Plant Do We Eat?

Students review the structure of angiosperm plants and learn about the diversity of plant form by using evidence from examination of fruits and vegetables to identify which part of the plant each fruit or vegetable is.

Download Student Handout: PDF format or Word format

Download Teacher Preparation Notes: PDF format or Word format

View and submit comments

Invertebrate Diversity (revised, May, 2011)

Students compare the external anatomy and locomotion of earthworms, mealworms, crickets and crayfish, all of which can be purchased at low cost from local pet stores. Discussion questions help students understand the evolutionary basis of observed similarities and differences. This activity can be used as an introduction to the Annelid and Arthropod phyla and the principle that form matches function.

Download Student Handout: PDF format or Word format

Download Teacher Preparation Notes: PDF format or Word format

View and submit comments

 

More Minds-on Activities

More Minds-on Activities for teaching biology are available at http://serendipstudio.org/exchange/bioactivities#ecoevo. These include overviews, discussion/worksheet activities, games, and web-based activities for learning and review.

 

Human PhysiologyRunner

Regulation of Human Heart Rate (revised, July, 2013)

Students learn how to measure heart rate accurately. Then students design and carry out an experiment to test the effects of an activity or stimulus on heart rate, analyze and interpret the data, and present their experiments in a poster session. In this activity students learn about both cardiac physiology and scientific method.

Download Student Handout: PDF format or Word format

Download Teacher Preparation Notes: PDF format or Word format

View and submit comments

Breathing and Holding Your Breath

Students begin with interactive activities to develop a basic understanding of why cells need oxygen and need to get rid of carbon dioxide, how the circulatory and respiratory systems cooperate to bring oxygen and remove carbon dioxide from cells all over the body, and how the nervous system regulates breathing. Then, students carry out an experiment to test whether changing levels of oxygen and carbon dioxide influence how long they can hold their breath.

Download Student Handout: PDF format or Word format

Download Teacher Preparation Notes: PDF format or Word format

View and submit comments

Studying Our Senses

Students investigate how a person identifies different flavors of jellybeans, including the contribution of smell to taste sensations. Students also explore the surprising ways the brain interprets the patterns of light and dark that reach our eyes; visual illusions illustrate general principles of sensory processing.

Download Student Handout: PDF format or Word format

Download Teacher Preparation Notes: PDF format or Word format

View and submit comments

 

More Minds-on Activities

More Minds-on Activities for teaching biology are available at http://serendipstudio.org/exchange/bioactivities#physiol. These include overviews, discussion/worksheet activities, games, and web-based activities for learning and review.

 

View and Submit General Comments

If you prefer, you can send a private message with comments or requests for additional information to Ingrid Waldron at iwaldron@sas.upenn.edu.

© 2003-2010 by Drs. Ingrid Waldron, Jennifer Doherty, Scott Poethig, and Lori Spindler, University of Pennsylvania Biology Department, Amy Dewees, Jenkintown High School and Bob Farber, Central High School, Philadelphia

Teachers are encouraged to copy and modify these labs for use in their teaching.


Index of Hands-On Activities for Teaching Biology | Forums | Science and Education | Serendip Home |

Send us your comments at Serendip

© by Serendip 1994- - Last Modified: Wednesday, 02-May-2018 11:57:11 CDT