Serendip is an independent site partnering with faculty at multiple colleges and universities around the world. Happy exploring!

Hands-on Biology Activities

How does evolution result in similarities and differences?

Earthword, mealworm,and cricket

In this hands-on, minds-on activity, students analyze the similarities and differences between bat and squirrel skeletons and between bat and insect wings.

Students learn about the two ways that evolution produces similarities: (1) inheritance from shared evolutionary ancestors (homologous characteristics) and (2) independent evolution of similar characteristics to accomplish the same function (analogous characteristics).

In the laboratory investigation, students observe the external anatomy and locomotion of earthworms, mealworms, and crickets. Students use these observations and the concepts they have learned to figure out which two of these animals are more closely related evolutionarily. (NGSS)

Download Student Handout: PDF format or Word format

Download Teacher Preparation Notes: PDF format or Word format

Food Webs – Understanding What Happened When Wolves Returned to Yellowstone

To begin, students view a video about the trophic cascade that resulted when wolves were reintroduced to Yellowstone. Next, students learn about food chains and food webs. They construct and analyze a food web for Yellowstone National Park. Finally, students use what they have learned to better understand the trophic cascade caused by the return of wolves to Yellowstone.

This learning activity provides an introduction to the learning activities, Carbon Cycles and Energy Flow through Ecosystems and the Biosphere and Trophic Pyramids. All three of these activities are included in Food Webs, Energy Flow, Carbon Cycle and Trophic Pyramids, which is intended for classroom instruction.

UV, Mutations, and DNA Repair

Before and after UV on double helixStudents learn about the effects of UV light, mutations and DNA repair on the survival of prokaryotes and the risk of skin cancer. In the first experiment, students evaluate the effects of different durations of UV exposure on survival and population growth of Haloferax volcanii. This experiment also tests for photorepair of DNA damage. Students design the second experiment, which evaluates the effectiveness of sunscreen. In addition, students answer analysis and discussion questions that promote their understanding of molecular biology, cancer, and the interpretation of experimental results. 

Food Webs, Energy Flow, Carbon Cycle, and Trophic Pyramids

Food web with plants and animals

To begin this hands-on, minds-on activity, students view a video about ecosystem changes that resulted when wolves were reintroduced to Yellowstone. Then, students learn about food chains and food webs, and they construct and analyze a food web for Yellowstone National Park. Students use what they have learned to understand trophic cascades caused by the return of wolves to Yellowstone.

Next, students learn that the biosphere requires a continuous inflow of energy, but does not need an inflow of carbon atoms. To understand why, students analyze how the carbon cycle and energy flow through ecosystems result from photosynthesis, biosynthesis, cellular respiration, and the trophic relationships in food webs.

In the final section, students use the concepts they have learned to understand trophic pyramids and phenomena such as the relative population sizes for wolves vs. elk in Yellowstone. Thus, students learn how important ecological phenomena result from processes at the molecular, cellular, and organismal levels.

For virtual instruction, you can use Food Webs – Understanding What Happened When Wolves Returned to Yellowstone, Carbon Cycles and Energy Flow through Ecosystems and the Biosphere, and Trophic Pyramids

Meiosis and Fertilization – Understanding How Genes Are Inherited

In this hands-on, minds-on activity, students use model chromosomes and answer analysis and discussion questions to learn about the processes of meiosis and fertilization.

Students first analyze how the processes of meiosis and fertilization result in the alternation between diploid and haploid cells in the human lifecycle. To learn how meiosis produces genetically diverse gametes, students analyze the results of crossing over and independent assortment.

As they model meiosis and fertilization, students follow the alleles of a human gene from the parents' body cells through gametes to zygotes.They learn how the outcomes of meiosis and fertilization can be represented in a Punnett square.

A final brief section contrasts sexual reproduction with asexual reproduction.

This activity can be used to introduce meiosis and fertilization or to review these processes. 
(NGSS)

Download Student Handout: PDF format or Word format

Download Teacher Preparation Notes: PDF format or Word format

Mitosis and the Cell Cycle - How a Single Cell Develops into the Trillions of Cells in a Human Body

Cell cycle producing daughter cellsIn this hands-on, minds-on activity, students use model chromosomes and answer analysis and discussion questions to learn how the cell cycle produces genetically identical daughter cells.

Students learn how DNA replication and mitosis ensure that each new cell gets a complete set of chromosomes with a complete set of genes.Students learn why each cell needs a complete set of genes and how genes influence phenotypic characteristics.

To understand how a single cell (the fertilized egg) develops into the trillions of cells in a human body, students analyze an exponential growth model of increase in number of cells. The final section provides a very brief introduction to cellular differentiation. 

This activity can be used as an introduction to mitosis or to reinforce understanding of mitosis. 

In our follow-up meiosis and fertilization activity (/sci_edu/waldron/#meiosis) students learn how the movement of gene-carrying chromosomes during meiosis and fertilization results in the inheritance of genes.

Photosynthesis Investigation

cell diagramIn the first part of this activity, students learn how to use the floating leaf disk method to measure the rate of net photosynthesis (i.e. the rate of photosynthesis minus the rate of cellular respiration). They use this method to show that net photosynthesis occurs in leaf disks in a solution of sodium bicarbonate, but not in water. Questions guide students in reviewing the relevant biology and analyzing and interpreting their results. In the second part of this activity, student groups develop hypotheses about factors that influence the rate of net photosynthesis, and then each student group designs and carries out an investigation to test the effects of one of these factors. (NGSS)

A Scientific Investigation – What types of food contain starch and protein?

Starch molecule

In the first part of this activity, students use basic information about the structure, functions, and synthesis of starch and proteins to understand why certain parts of plants or animals contain starch and/or proteins.

Then, students practice the scientific method by carrying out key components of a scientific investigation, including generating hypotheses, developing experimental methods, designing and carrying out experiments to test their hypotheses, and, if needed, using experimental results to revise their hypotheses. (NGSS)

Download Student Handout: PDF format or Word format

Download Teacher Preparation Notes: PDF format or Word format

Enzymes Help Us Digest Food

In this hands-on, minds-on activity, students investigate the biological causes of Maria’s symptoms and Jayden’s symptoms. To explore the causes of these symptoms, students carry out two experiments and interpret the results, and they answer additional analysis and discussion questions.

Students learn about enzyme function and enzyme specificity as they figure out that Maria’s symptoms are due to lactase deficiency (resulting in lactose intolerance) and Jayden’s symptoms are due to sucrase deficiency.

In the final section, students are challenged to generalize their understanding of enzymes to interpret a video of an experiment with saliva, starch and iodine. This activity can be used in an introductory unit on biological molecules or later during a discussion of enzymes.

Download Student Handout: PDF format or Word format

Download Teacher Preparation Notes: PDF format or Word format

Hands-on Activities for Teaching Biology to High School and Middle School Students

The expression "hands-on, minds-on" summarizes the philosophy we have incorporated in these activities – namely, that students will learn best if they are actively engaged and if their activities are closely linked to understanding important biological concepts. To enhance student learning and understanding, many of our activities provide a learning sequence which includes multiple discussion and analysis questions and one or more hands-on investigations.

Many of our activities are explicitly aligned with the Next Generation Science Standards, as indicated by (NGSS) in the descriptions. These activities foster student understanding of Disciplinary Core Ideas, engage students in Scientific Practices, provide the opportunity to discuss Crosscutting Concepts, and prepare students to meet the Performance Expectations of the Next Generation Science Standards. Additional information is provided in Summary Tables and in the Teacher Preparation Notes for these activities.

To accommodate limited budgets, most of our activities can be carried out with minimum equipment and expense for supplies.

Syndicate content