Serendip is an independent site partnering with faculty at multiple colleges and universities around the world. Happy exploring!

biology

Coronaviruses – What They Are and How They Can Make You Sick

Cross section of Coronavirus

In the shorter version of the Student Handout, students learn how coronaviruses are replicated inside our cells, how white blood cells fight a coronavirus infection, and how a coronavirus infection can cause you to feel sick.

In the longer version of the Student Handout, students also learn how the respiratory and circulatory systems work together to provide oxygen to the body’s cells, and they learn how a coronavirus infection can interfere with oxygen delivery, which can result in severe disease.

What is natural selection?

This minds-on, analysis and discussion activity introduces students to the process of natural selection, including key concepts and vocabulary.

In addition, students analyze several examples to learn about the conditions that are needed for natural selection to occur.

(This activity is an expanded version of the first section of the hands-on activity Evolution by Natural Selection.)

Natural Selection and the Peppered Moth

Peppered moths on tree barkIn this minds-on analysis and discussion activity, students interpret evidence concerning natural selection in the peppered moth.

This evidence includes (1) the results of experiments that evaluated predation by birds on different color forms of the peppered moth in different environments, (2) the genetic basis for the different color forms, and (3) correlated changes in both the environment and the frequency of each color form in industrialized and rural regions in England and the US.

This activity will help students to consolidate a scientifically accurate understanding of the process of natural selection.

(This activity is very similar to the last section of the hands-on activity Evolution by Natural Selection.)

Resources for Teaching about Coronavirus

Microscopic image of SARS CoV-2Our understanding of the novel coronavirus and the COVID-19 pandemic continues to change rapidly. The following resources for teaching high school biology students are up-to-date as of November 2022. Previously provided resources are available at (Archived).

On this page:

Learning Activities

For the first four learning activities listed below, the links lead to Student Handouts (available in Word, PDF, and as a Google doc) and Teacher Notes that include instructional suggestions, background information, links to additional sources of information, and an explanation of how each activity is aligned with the Next Generation Science Standards (#NGSS).

Introduction to Cells

Organelles in animal and plant cells

This minds-on analysis and discussion activity begins with an anchor phenomenon – a video of a eukaryotic cell chasing and eating a bacterium. This leads to analyses of how cells carry out the activities of life and the similarities and differences between eukaryotic and prokaryotic cells.

Additional topics include the functions of the organelles in eukaryotic cells and the differences between animal and plant cells.

Characteristics of Life

HummingbirdBiology is the scientific study of living things.

The Student Handout, together with two videos, help students to understand the characteristics of living things and the challenges of distinguishing between living and non-living things.

This analysis and discussion activity also introduces several themes that will be revisited in a general biology course.

Ecology Concepts and Learning Activities

This overview summarizes major ecological concepts and recommends learning activities on topics such as food webs, energy flow through ecosystems, the carbon cycle, trophic pyramids, exponential and logistic population growth, species interactions in biological communities, succession, and effects of human activities on ecosystems. This overview also recommends introductory ecology readings. 

Suggested Sequence of Topics and Learning Activities in a High School Biology Course

Minds-On Biology

In the proposed sequence of topics and learning activities, the major biological concepts build in a logical progression that uses earlier concepts to help students understand subsequent concepts and reinforces student understanding of earlier concepts as they are used in subsequent sections of the course. For example, students are introduced to DNA structure and function early in the course and then use their understanding of DNA structure and function to enhance their understanding of subsequent topics, such as genetics and cell structure and function.

The attached documents present the proposed sequence of topics and learning activities. The learning activities will help students meet the Next Generation Science Standards (NGSS) (http://serendipstudio.org/exchange/bioactivities/NGSS/listing).

Photosynthesis, Cellular Respiration and Plant Growth

This minds-on, hands-on activity begins with the driving question of how a tiny seed grows into a giant sequoia tree.

To address this question, students first consider what types of molecules and atoms are in plants. Next, they analyze data from an experiment on changes in plant biomass in the light vs. dark. Then, they conduct an experiment to evaluate changes in CO2 concentration in the air around plants in the light vs. dark.

Students interpret these data to develop an increasingly accurate and evidence-based model of the contributions of photosynthesis and cellular respiration to changes in plant biomass.

This activity counteracts several common misconceptions about plant growth, photosynthesis, and cellular respiration. (NGSS)

Levels of Organization in Biology

This activity uses the example of a flock of pelicans in flight to illustrate how analysis at multiple levels of organization enhances our understanding of a biological phenomenon.

Through an interactive whole-class discussion of PowerPoint slides, students learn about the multiple levels of organization in biology, as well as reductionism and emergent properties.

To reinforce these concepts, students answer the questions in a Student Handout and discuss their answers in additional whole class discussions.

Syndicate content