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ABSTRACT
Active host-pathogen interactions take place during infection of human immunodeficiency virus type 1 (HIV-1).

Outcomes of these interactions determine the efficiency of viral infection and subsequent disease progression. HIV-
infected cells respond to viral invasion with various defensive strategies such as innate, cellular and humoral immune
antiviral mechanisms. On the other hand, the virus has also developed various offensive tactics to suppress these host
cellular responses. Among many of the viral offensive strategies, HIV-1 viral auxiliary proteins (Tat, Rev, Nef, Vif, Vpr
and Vpu) play important roles in the host-pathogen interaction and thus have significant impacts on the outcome of HIV
infection. One of the best examples is the interaction of Vif with a host cytidine deaminase APOBEC3G. Although
specific roles of other auxiliary proteins are not as well described as Vif-APOBEC3G interaction, it is the goal of this
brief review to summarize some of the preliminary findings with the hope to stimulate further discussion and investiga-
tion in this exhilarating area of research.
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INTRODUCTION
In addition to the prototypical retroviral Gag, Pol, and

Env proteins, HIV-1 produces six additional proteins, i.e.,
Tat, Rev, Nef, Vif, Vpr and Vpu (Fig. 1, adapted from
[1]). While Tat and Rev are required for viral replication,
Nef, Vif, Vpr and Vpu are usually dispensable for viral
growth in many of the in vitro systems [2, 3], hence
known as auxiliary proteins.  However, these proteins are
often necessary for viral replication and pathogenesis in
vivo and they carry out many of the essential functions
during the viral life cycle (Tab. 1).  Consequently, pres-
ence or absence of these auxiliary proteins can signifi-
cantly change the course and severity of the viral infec-
tion [4]. In the followings, main functions of these auxil-

iary proteins in the process of HIV-1 infection and their
roles in HIV-host interactions are briefly described.

Viral Protein U (Vpu)
Vpu is a small (9 kDa) membrane protein that enhances

the release of progeny virions from infected cells and in-
duces the degradation of the CD4 receptor. Vpu expressed
in the ER interacts with a membrane-proximal domain of
the cytoplasmic tail of CD4 and links it to h-βTrCP [5], a
member of the F-box protein family first characterized as
components of ubiquitin-ligase complexes [6]. The CD4–
Vpu–h-βTrCP ternary complex then recruits SKP1, an-
other member of the ubiquitination machinery [7]. As a
result, CD4 is ubiquitinated and targeted to proteasomes
for degradation. The ability of Vpu to increase progeny
virus secretion from infected cells had been attributed ini-
tially to ion conductive membrane pore formation charac-
teristic to cells over-expressing Vpu [8]. However, a later
report [9] showed that the requirement for Vpu is host
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cell-dependent, suggesting that Vpu may counteract an
inhibitory factor expressed in some, but not the other,
cells. This factor was identified recently as TASK-1, a
widely expressed acid-sensitive K+hannel [10]. TASK-1
is structurally homologous to Vpu, suggesting oligomer-
ization as a possible mechanism of inactivation of ion chan-
nel activity of these proteins.  However, the mechanism
by which TASK-1 inhibits virion release is still unclear.

Viral Protein R (Vpr)
The viral protein R (Vpr) is a 96 amino acids small

basic protein, and is well conserved in HIV-1, HIV-2 and
SIV [11].  Nuclear magnetic resonance (NMR) analysis
suggests that Vpr protein of HIV-1 consists of an α-helix-
turn-α-helix domain in the amino-terminal half from amino
acids 17 to 46 and a long α-helix from 53 to 78 ended
with an α turn in the carboxyl-terminal half [12, 13].  The

Vpr protein can be found in virions [14], cells, sera and
cerebrospinal fluid of AIDS patients, indicating that it may
exert its biological functions on many different targets.
Despite its small size, Vpr has been shown to have mul-
tiple activities during virus replication, including effects
on the nuclear import of the proviral DNA as a component
of the pre-integration complex (PIC), cell cycle G2/M
progression, regulation of apoptosis, and transactivation
of the HIV-1 LTR as well as host cell genes.

One of the Vpr functions in the viral infection process
is to mediate the nuclear import of HIV-1 PIC [15]. In the
cytoplasm, HIV viral RNA (in complex with several viral
proteins) is reverse transcribed into DNA which then as-
sociates with the host cellular proteins to form PIC. Vpr is
a component of this pre-integration complex [16-18]. Vpr
moves with PIC along cytoskeletal filaments and accumu-
lates at the perinuclear region close to centrosomes [19].
Though it is not yet known whether Vpr plays an active
role during this movement of the PIC along microtubules,
Vpr appears to participate in the subsequent steps, includ-
ing the anchoring of the PIC to the nuclear envelope and
the nuclear translocation of the viral DNA [15].  Experi-
ments in macrophages strongly suggest an important role
for Vpr in mediating the nuclear import of HIV-1 PICs into
the nucleus of nondividing cells [20]. The mechanism of
Vpr-mediated nuclear import is not clear, it is likely that
Vpr interacts directly or indirectly with cellular machinery
regulating the nucleo-cytoplasmic shuttling [21-25].

In addition to the effect in nuclear import, Vpr induces
cell cycle G2 phase arrest in  human and fission yeast cells
suggesting a highly conserved effect of Vpr on cellular
activities [26-32].  Progression of cells from G2 phase of
the cell cycle to mitosis is a tightly regulated cellular pro-
cess that requires activation of the Cdc2 kinase, which
determines onset of mitosis in all eukaryotic cells.  In hu-
man and fission yeast cells, the activity of Cdc2 is regu-
lated in part by the phosphorylation status of Cdc2, which
is phosphorylated by Wee1 kinase during late G2 and is
rapidly dephosphorylated by the Cdc25 tyrosine phos-
phatase to trigger entry into mitosis. These Cdc2 regula-
tors are the downstream targets of two well-characterized
G2/M checkpoint pathways which prevent cells from en-
tering mitosis when cellular DNA is damaged or when DNA
replication is inhibited. Vpr also inhibits Cdc2 through
hyperphosphorylation [29, 32]. However, the exact mo-
lecular mechanism leading to the hyper-phosphorylation
of Cdc2 and G2 arrest is not yet clear.  There are reports
suggesting that Vpr induces G2 arrest by mimicking com-
ponents of the DNA damage repair pathway involving ATR,
Rad17 and Hus1 [33, 34]. However, other reports showed
that Vpr modulates cell cycle G2/M transition through cel-
lular mechanisms other than the classic mitotic checkpoints

Fig. 1 Genome of HIV-1 (Adapted from [1]).

Tab. 1  HIV-1 auxiliary proteins and their major activities
Protein Major Functions
Vpu CD4 degradation

Promoting virion release
Vif Stimulation of reverse transcription

Counteraction of host anti-virus factors, e.g.,
APOBEC3G

Vpr Nuclear import of pre-integration complex
Interference with host cell cycle progression
(G2/M regulation)
Induction of apoptosis
Transactivation of HIV-LTR and host cellular genes

Nef Modulation of cellular receptors including CD4, MHCI,
MHCII and CD28
Enhancement of viral infectivity
Interference with host cell signal transduction
Regulation of cholesterol trafficking

Rev Nuclear export of un-spliced viral RNA
Effects on the viral RNA stability and translation

Tat Promoting viral RNA transcription
Induction of apoptosis
Inhibition of siRNA formation by Dicer
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[32, 35-37]. For example, Vpr-induced G2 arrest was
shown to involve protein phosphatase 2A [32, 36] or a
mitogen-activated protein kinase signal transduction path-
way [37]. It is possible that there are multiple mechanisms
leading to Vpr-induced G2 arrest. Alternatively, vpr gene
expression may trigger a type of cellular surveillance re-
sponses other than the well-characterized DNA damage
or replication checkpoints but results in G2 arrest by im-
pinging upon the same cellular targets, i.e., Cdc2. This
premise certainly needs to be further evaluated.  Biological
significance of Vpr-induced G2 arrest during viral infec-
tion is also not well understood.  However, HIV-1 LTR
seems to be more active in the G2 phase, implying that
Vpr-induced G2 arrest may confer a favorable cellular
environment for efficient transcription of HIV-1 [38].

Vpr also induces apoptosis in infected cells. Since a
major mechanism for CD4+ T cell depletion in HIV-in-
fected patients is apoptosis, which is induced by HIV
through multiple pathways in both infected cells and non-
infected “bystander” cells [39], it is expected that the
apoptotic effect of Vpr may contribute to CD4+ T cell
depletion. Although it is well accepted that Vpr induces
apoptosis, there are studies suggesting that Vpr may also
act as a negative regulator of T cell apoptosis [40, 41]. In
addition, it is debated whether Vpr-induced apoptosis is a
result of G2 arrest. The activity of the cell cycle regula-
tory Wee-1 kinase associates with a decrease in Vpr-in-
duced apoptosis, indicating a direct correlation between
G2 arrest and apoptotic properties of Vpr [42].  However,
other reports suggested that these two Vpr activities can
be separated [43-47].  Even though the molecular mecha-
nism of Vpr-induced apoptosis is elusive, most research-
ers favor the idea that Vpr induces apoptosis through mi-
tochondria-dependent pathway [48]. This intrinsic path-
way for apoptosis is initiated by mitochondrial outer mem-
brane permeabilization (MOMP) leading to release of the
apoptotic factors from the space between the inner and
outer mitochondrial membranes [49]. Vpr binds to ANT
(adenine nucleotide transporter) protein of the inner mito-
chondrial membrane [48, 50, 51], and can move across
the outer mitochondrial membrane leading to depolariza-
tion of the inner mitochondrial membrane, swelling of the
inner mitochondria and ultimately MOMP with release of
the apoptosis factors. There is considerable evidence sup-
porting this hypothesis, including the finding that the cell
killing induced by Vpr can be reduced by the down-regu-
lation of ANT levels [48], and that Vpr activates caspase-
9 which initiates caspases of the intrinsic apoptotic path-
way [52]. However, other reports do not fit this hypothesis.
Vpr was shown to locate predominantly in the nucleus or
at the nuclear membrane [25, 53, 54], but not in the
mitochondria. In addition, it has been reported that Vpr

activates caspase-8 [55, 56] which should not be acti-
vated in the intrinsic MOMP pathway.

There are several reported host responses to Vpr. Vpr
is targeted by the CD8+ T-lymphocytes during the acute
phase of the viral infection [57, 58]. Production of some
heat shock proteins (HSPs) is also responsive to vpr gene
expression [59-61]. Furthermore, some of the heat shock
proteins, such as yeast Hsp16 or human HSP70, exert
effective protective effect against some or all of the Vpr
activities [62-64]. Conversely, Vpr suppresses cellular [65]
and humoral immune responses through adjusting the cell
proliferation [40, 66, 67] or the production of the cytokines
(TNF α and IL12) and chemokines (RANTES, MIP-1α
and MIP-1β) [40, 67]. Thus there appears to be an active
and antagonistic interaction between Vpr and host anti-
Vpr responses. For detailed review on this subject see [68].

Virus Infectivity Factor (Vif)
Vif protein of HIV-1 is a 192 aa protein that expresses

at high levels in the cytoplasm of infected cells. Vif was
thought to be important because it is essential for the re-
production of HIV-1 in peripheral blood lymphocytes,
macrophages ,  and cer ta in cel l  l ines known as
‘nonpermissive’ cells [69]. Vif-deficient virions produced
from ‘permissive’ cells can infect ‘nonpermissive’ cells,
but the virus subsequently produced is not infectious. The
molecular nature of permissivity and the exact function of
Vif in infection of nonpermissive cells was not known until
recently when a series of reports showed that a host cel-
lular protein known as APOBEC3G (apolipoprotein B
mRNA-editing enzyme catalytic polypeptide-like 3G) is a
potent inhibitor of HIV infection in the nonpermissive cells
[70, 71]. APOBEC3G is a member of the cytidine deami-
nase family, which prevents viral cDNA synthesis via
deaminating deoxycytidines (dC) in the minus-strand
retroviral cDNA replication intermediate [72-76]. As a
result, it creates stop codons or G-A transitions in the newly
synthesized viral cDNA which is then subjective to elimi-
nation by host DNA repair machinery [74, 76]. APOBEC3G
confers its antiviral effect by encapsidating into the virus
particles through interaction with viral Gag protein [77-
81]. Thus, APOBEC3G represents an innate host defense
mechanism against HIV infection. However, the virus has
also developed an offensive strategy to suppress the anti-
viral effect of APOBEC3G through Vif.  Vif binds directly
to APOBEC3G and counteracts its anti-HIV activity by
promoting its degradation. Vif-mediated APOBEC3G deg-
radation involves the recruitment of a specific E3 ligase
complex, which leads to the polyubiquitylation and
proteasome-mediated degradation [82-86].

In addition to the counteracting effect of Vif on
APOBEC3G, Vif protein is specifically packaged into vi-
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rus particles, where it is processed by protease. Protease-
processed Vif is believed to be an important step for pro-
duction of infectious viruses [87]. Vif also stabilizes viral
nucleoprotein complex through direct interaction with 5'
region of HIV-1 genomic RNA [88-91]. Moreover, Vif
modulates viral reverse transcriptase through its C-termi-
nal domain either by stimulating the binding of RT and
primer or increasing the polymerization rate of RT [92].

Negative Regulator Factor(Nef)
The HIV-1 Nef protein is a 27-kDa myristoylated pro-

tein that is abundantly produced during the early phase of
viral replication cycle.  It is highly conserved in all primate
lentiviruses, suggesting that its function is essential for
survival of these pathogens. Nevertheless, early publica-
tions reported a negative effect of Nef on viral replication,
hence the name ‘negative factor’ or Nef [93, 94]. Subse-
quent studies, however, demonstrated that Nef plays an
important role in several steps of HIV replication.  In
addition, it appears to be a critical pathogenic factor, as
Nef-deficient SIV and HIV are significantly less patho-
genic than the wild-type viruses [95-97], whereas Nef-
transgenic mice show many features characteristic to HIV
disease [98, 99].

The role of Nef in HIV-1 replication and disease patho-
genesis is determined by at least four independent activi-
ties of this protein. First, Nef affects the cell surface ex-
pression of several cellular proteins.  It down-regulates
CD4 [100], CD8 [101], CD28 [102], major histocompat-
ibility complex class I [103] and class II [104] proteins,
but upregulates the invariant chain of MHC II (CD74)
[104]. To modulate cell surface receptor expression, Nef
utilizes several strategies, linked to distinct regions within
the Nef protein (reviewed in [105]). For example, down-
regulation of the CD4 and CD28 receptors involves a
dileucine-based motif in the second disordered loop of Nef,
which connects Nef to adaptor protein (AP) complex
[106], which is a part of cellular endocytosis machinery.
Nef also directly binds to CD4 and CD28 using overlap-
ping sequences within its core structure [102], thus in-
ducing accelerated endocytosis of these proteins via
clathrin-coated pits followed by lysosomal degradation.
Down-regulation of MHC class I involves Nef-mediated
connection in the endosomes between MHC-I’s cytoplas-
mic tail and the phosphofurin acidic cluster sorting pro-
tein-1 (PACS-1)-dependent protein-sorting pathway [107].
Since all these receptors are essential for proper functions
of the immune system, modulation of their surface ex-
pression by Nef has profound effects on anti-HIV im-
mune responses. Down-regulation of MHC I protects HIV-
infected cells from host CTL response, whereas down-
modulation of CD28 and CD4 probably limits the adhe-

sion of a Nef-expressing T cell to the antigen-presenting
cell, thus promoting the movement of HIV-infected cells
into circulation and the spread of the virus. Another ben-
efit for the virus from CD4 down-modulation is abolish-
ment of interaction between the receptor and the Env pro-
tein of the budding virus, which likely increases HIV re-
lease from infected cell as well as infectivity of viral
particles.

Second, Nef interferes with cellular signal transduction
pathways. Nef is myristoylated on its amino-terminus and
exhibits a proline-rich SH3-binding domain, both of which
mediate Nef association with lipid rafts, cholesterol-rich
membrane microdomains that concentrate potent signal-
ing mediators [108]. Nef was found to complex with and
activate serine/threonine protein kinase PAK-2 [109], which
may contribute to activation of infected cell. In vitro, HIV-
infected T cells produce enhanced levels of interleukin-2
during activation [108]. When expressed in macrophages,
Nef intersects the CD40L signaling pathway inducing se-
cretion of chemokines and other factors that attract rest-
ing T cells and promote their infection by HIV [110, 111].

Third, Nef enhances virion infectivity and viral repli-
cation [112]. This effect is mediated by Nef present in
HIV virions and is due, at least in part, to the ability of
Nef to induce actin remodeling and facilitate the move-
ment of the viral core past a potentially obstructive cor-
tical actin barrier [113]. In support of this model, the
infectivity-enhancing properties of Nef are eliminated by
disruption of actin cytoskeleton or pseudotyping of HIV
virions with VSV-G glycoprotein, which targets viral entry
to endocytosis-dependent pathway thus bypassing corti-
cal actin.

Fourth, Nef regulates cholesterol trafficking in HIV-in-
fected cells. Cholesterol plays an important role in the HIV
life cycle, as HIV assembly and budding, as well as infec-
tion of target cells all depend on plasma membrane
cholesterol. Depletion of cellular cholesterol markedly and
specifically reduces HIV-1 particle production [114], and
cholesterol-sequestering drugs, such as beta-cyclodextrin,
render the virus incompetent for cell entry [115, 116].  Nef
has been shown to bind cholesterol via a cholesterol-rec-
ognition motif at its carboxyl-terminus and to transport
newly synthesized cholesterol to the site of viral budding
[117]. In addition, Nef interferes with activity of cellular
cholesterol efflux machinery (MB, unpublished result), thus
effectively hijacking cholesterol transport in HIV-infected
cell.

Regulator of Expression of the Virion (Rev)
Rev is a ~116 aa sequence-specific RNA binding phos-

phoprotein that is expressed during the early stages of HIV-
1 replication [118, 119].  Rev transports to cytoplasm single-
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spliced and un-spliced viral mRNAs that are required for
expression of HIV structural proteins and production of
genomic RNA. Eukaryotes have evolved a special mecha-
nism to retain the incompletely spliced RNAs in the nucleus.
This mechanism is undoubtedly beneficial to the host cell,
but presents HIV-1 with a serious problem. Since HIV
only has one LTR promoter, it encodes a single, genome-
length primary transcript. In order to express the various
incompletely spliced viral transcripts, some of HIV-1 tran-
scripts must be transported out of the nucleus without
splicing. Rev fulfills this function [120].

Rev contains at least three functional domains [119,
121]. An arginine-rich domain which mediates both spe-
cific RNA binding and nuclear/nucleolar localization [122,
123], a nuclear export signal (NES) [119, 124], and a
homomultimerization domain [125, 126]. Homo-
multimerized Rev interacts directly with importin β and
the nucleolar phosphopprotein B23 via its NLS domain
[127, 128]. The Rev-importin β-B23 complex is recruited
to the nuclear pore by the direct importin β-nucleoporin
interaction. GTPase known as Ran plays a key role during
the transporting process [129]. In the cytoplasm, Ran pre-
sents in a Ran-GDP form allowing Rev binding to importin
β.  Once the importin β-Rev complex reaches the nucleus,
where Ran-GTP predominates due to high concentration
of Ran-GEF (Ran-specific guaninenucleotide-exchange
factor) and RCC1 (regulator of chromosomal condensa-
tion 1), the interaction of importin β with Ran-GTP re-
sults in the disassembly of the Rev-importin β-B23 com-
plex and the release of Rev cargo. In the nucleus, Rev
binds to a special 234-basepair region of complex HIV
RNA secondary structure called the Rev Response Ele-
ment (RRE), which is located within the second intron of
HIV [120]. The high-affinity binding of first Rev mono-
mer to its primary site in the RRE structure is followed by
the binding of additional copies of Rev to form multimerized
Rev [130-133]. The Rev protein, with its RNA cargo, will
then bind to CRM1, also known as exportin-1 [134-136],
through it’s nuclear export signal (NES) domain. CRM-1
forms a complex with the GTP-bound Ran and the leu-
cine-rich NES mediating the export of the NES-contain-
ing protein from the nucleus through the nuclear pore [135].
In the cytoplasm, a Ran-specific GTPase-activating pro-
tein (Ran-GAP) converts Ran-GTP to Ran-GDP, result-
ing in a Ran-GTP gradient across the nuclear membrane.
Upon binding of RanBP1 (Ran binding protein 1) to Ran-
GTP, the Crm1-Rev-Ran-GTP complex is disassembled
and the Rev/RNA cargo is released. Asymmetric distribu-
tion of Ran-GEF and Ran-GAP between nucleus and cy-
toplasm ensures a constant Ran-GTP/GDP gradient to fa-
cilitate Crm1 recycling and continued Rev/RRE nuclear
export [137-140]. This cycle of continuous protein shut-

tling between the nucleus and the cytoplasm generates a
system where the small amounts of Rev present in an HIV-
infected cell have the capacity to mediate the export of
significant amounts of intron-containing HIV RNAs.

Besides Crm1, a number of other cellular proteins also
participate in nuclear transport activity of Rev including
eIF-5A (enkaryotic initiantion factor 5A) [141, 142], Sam68
(68 kDa Src-associated protein) [143], certain DEAD box
protein RNA helicases (DDX3, DDX1) and hRIP (human
Rev-interacting protein). The eIF-5A plays a crucial role
in the nuclear export of Rev-RRE complexes and mutant
eIF-5A inhibits HIV-1 replication in lymphocytes [141, 142].
The precise mechanism of eIF-5A activity in Rev function
remains to be defined. However, it was proposed that eIF-
5A acts as an adapter that targets the Rev-NES to the
nucleoplasmic face of the NPC and mediates efficient bind-
ing to Crm1 [139, 144]. Sam68 promotes the nuclear ex-
port of Rev in astrocytes [145]. Sam68 is also required
for Rev function and HIV-1 production in HeLa cells [146].
In 293T, Jurkat cells and peripheral blood mononuclear
cells, down-modulation of endogenous Sam68 significantly
lowers HIV expression by inhibiting the CRM1-mediated
export of nuclear Rev, resulting in the nuclear retention of
both Rev and Crm1[147]. Sam68 might function through
enhancement of HIV-1 RNA 3’ end processing [148].
Recent research showed that certain DEAD box (Asp-
Glu-Ala-Asp) protein RNA helicases (DDX3 and DDX1)
and hRIP (human Rev-interacting protein) play important
roles in Rev functions and HIV-1 replication. DDX3 acts
as a nucleo-cytoplasmic shuttling protein, which binds
CRM1 and localizes to nuclear membrane pores [149].
DDX1 is a critical co-factor for Rev function, which helps
maintain the proper subcellular distribution of Rev and
functions through the Rev-RRE axis [150, 151]. The hRIP
is an essential Rev cofactor required for virus replication.
Ablation of hRIP activity by a dominant-negative mutant
or RNA interference, inhibits virus production by mis-lo-
calizing Rev-directed RNAs to the nuclear periphery
whereas reintroduction of hRIP protein restores virus pro-
duction [152, 153].

In addition to facilitating nuclear export, Rev has sev-
eral additional effects on HIV RNA.  Rev increases stabil-
ity and translation of HIV RNA [154, 155]. With the ex-
pression of Rev, the half-life of HIV RNAs in the nucleus
of a T-cell line infected with HIV increases significantly
[156]. If Rev function is inhibited by LMB, a nuclear ex-
port inhibitor, nuclear pool of RRE-containing RNA de-
creases even in the presence of Rev [157]. HIV-infected
cells exert special mechanisms to counteract the function
of Rev; the 16.4.1 protein is one of anti-Vif cellular pro-
teins that also counteracts Rev activity. Overexpression
of 16.4.1 inhibits Rev, whereas downregulation of 16.4.1
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by siRNA stimulates Rev [158].

Transactivator of Transcription (Tat)
Tat is a small protein (101 amino acids in most clinical

HIV-1 isolates, 86 amino acids in the laboratory HIV-1
HXB2 strain) which is essential for efficient transcription
of viral genes and for viral replication. Tat potently trans-
activates LTR-driven transcription, resulting in a remark-
able increase of viral gene expression [159-161].

Tat increases the transcriptional rate in three different
ways. First, Tat modifies chromatin conformation at the
proviral integration site and makes it more suitable to viral
transcription. Tat binds to a structured RNA element (TAR,
transactivation-responsive region) present at the 5’-end
of viral leader mRNAs (nucleotide position +1 to +59 [163])
via cyclin T1 bridging between the activation domain of
Tat and the TAR loop [164]. Through this interaction, Tat
recruits a series of transcriptional complexes, including
enzymes with histone and factor acetyl transferase (HAT
and FAT) activities, which modify chromatin at the provi-
ral integration site and make it more suitable to
transcription. With Tat protein, long polyadenylated RNA
and increased gene expression ensue [159-161, 165].

Second, Tat recruits P-TEFb to adjust the activity of
polymerase II. In mammalian cells, RNA polymerase II
activity is controlled by the phosphorylation status of its
carboxyl-terminal domain (CTD). Hypophosphorylation of
the CTD on Ser2 correlates with low processivity, whereas
hyperphosphorylation increases the processivity of the
enzyme complex [166]. In the absence of Tat, transcrip-
tion from the HIV-1 LTR produces predominantly short
RNA because hypophosphorylated RNAPII is arrested
prematurely following the actions of negative elongation
factors, including DSIF (5, 6-dichloro-1-beta-D-
ribofuranosylbenzimidazolesensitivity-inducing factor) and
NELF (negative elongation factor complex) [167]. P-TEFb,
one of the kinase complexes that can phosphorylate the
CTD of RNA Pol II in the mammalian cells, is composed
of CKD9 kinase and its cyclin partner, cyclin T [168, 169].
Cdk9 kinase activity is naturally suppressed by interaction
with 7SK RNA, hexamethylene bisacetamide-induced pro-
tein1 [170] and indirubin-3’-monoxime. Tat binds to the
TAR structure on the viral RNA and recruits P-TEFb
through binding to cyclin T1 [164, 169, 171]. Recruit-
ment of P-TEFb to TAR stimulates RNAPII Ser2 phos-
phorylation by Cdk9 [170], and alters the substrate speci-
ficity of Cdk9 to include Ser5 phosphorylation of the CTD
[172], resulting in the dissociation of DSIF and NELF.
Recent studies demonstrated that human splicing factor
SKIP (the splicing-associated c-Ski-interacting protein
[173]) and PP1 (protein phosphatase-1) are also required
in this step [174]. As a result, Tat facilitates the transcrip-

tion initiation.  On the other hand, Tat also facilitates tran-
scription elongation. Acetylation of Tat at Lys50 caused
by p300 or hGCN5 dissociates cyclinT1 and Tat from TAR
RNA [175-177] and transfers Tat to the elongating RNAPII
complex where it recruits PCAF (p300/CREB binding pro-
tein-associated factor) via the PCAF bromodomain and
enhances the transcriptional elongation of HIV-1 [178-181].
It was proposed that arginine methylation within the argi-
nine-rich motif of HIV-1 Tat by PRTM6 (protein arginine
methyltransferases) triggers the dissociation of acetylated
Tat from the polymerase complex and PCAF at the end of
the transcription cycle [182, 183], and the ubiquitination
and dimethylation of arginines mark Tat for degradation
[184]. In addition, monomethylation can be reversed by
the action of a Tat peptidyl arginine deaminase, and
ubiquitinated Tat can be recycled after deacetylation by
SIRT1 (the class III deacetylase sirtuin 1) into the tran-
scription cycle [183, 185].

Third, Tat transactivates HIV-1 RNAs through the acti-
vation of NF-κB [186].  Protein members of the Rel/NF-
κB family bind to the enhancer element of the viral LTR
[187, 188]. In the un-stimulated normal mammalian cells,
NF-κB is retained in the cytoplasm by its inhibitor protein
IκB-α. Tat promotes NF-κB activation through a change
in the redox state of the cell and IκB-α degradation.

In addition to its crucial role in activating viral
transcription, Tat is associated with a number of additional
activities [189]. Extracellular Tat induces production of
cytokines such as transforming growth factor beta, IL-2,
or IL-6 [190-193]. Tat causes neurotoxicity in the central
nervous system [194-200] and apoptosis in cultured pe-
ripheral blood mononuclear cells and some CD4 T-cell lines
[201-204]. Another report demonstrated that Tat contrib-
utes to cell survival through up-regulation of the anti-
apoptotic gene Bcl-2 [205]. Recently, Benasser and co-
workers [206] demonstrated that Tat plays important role
in abrogating nucleic acid-based adaptive immunity, RNA
silencing. It is suggested that Tat impairs the cell’s RNA-
silencing defense by inhibiting the ability of Dicer to pro-
cess precursor double-stranded RNAs into siRNAs [206].
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