Annual plant

- Two compartments: reproductive and vegetative:

- Reproductive size is what counts, but allocation to vegetative growth could increase long-term reproductive size.

Vegetative size

- First day's vegetative size is V_{1}.
- After first day, vegetative size is previous vegetative size, plus vegetative increment: $V_{t}=V_{t-1}+x_{t-1}$.
- Vegetative increment is proportional to vegetative size and to fraction allocated to vegetative growth: $X_{t-1}=\left(1-b_{t-1}\right) L$.
- So, second day's vegetative size is: $v_{2}=v_{1}+v_{1}\left(1-b_{1}\right) L=v_{1}\left(1+\left(1-b_{1}\right) L\right)$.
- Third day:

$$
\begin{aligned}
v_{3} & =v_{2}\left(1+\left(1-b_{2}\right) L\right) \\
& =v_{1}\left(1+\left(1-b_{1}\right) L\right)\left(1+\left(1-b_{2}\right) L\right)
\end{aligned}
$$

- Notice that each subsequent day t, we're just going to tack an extra $\left(1+\left(1-b_{t}\right) L\right)$ to the end of a bunch of other $\left(1+\left(1-b_{\text {? }}\right) L\right)$'s. For example:

$$
v_{10}=v_{1}\left(1+\left(1-b_{1}\right) L\right)\left(1+\left(1-b_{2}\right) L\right)\left(1+\left(1-b_{3}\right) L\right)\left(1+\left(1-b_{4}\right) L\right)\left(1+\left(1-b_{5}\right) L\right)\left(1+\left(1-b_{6}\right) L\right)\left(1+\left(1-b_{7}\right) L\right)\left(1+\left(1-b_{8}\right) L\right)\left(1+\left(1-b_{9}\right) L\right) .
$$

- For ease of notation, we'll just write this:

$$
V_{10}=V_{1} \prod_{u=1}^{9}\left(1+\left(1-b_{u}\right) L\right)
$$

- Or, in general: $v_{t}=v_{1} \prod_{u=1}^{t-1}\left(1+\left(1-b_{u}\right) L\right)$.

Reproductive size

- First day's reproductive size is 0 .
- After first day, reproductive size is previous day's reproductive size, plus reproductive increment: $R_{t}=R_{t-1}+r_{t-1}$.
- Reproductive increment is proportional to vegetative size and to fraction allocated to reproductive growth: $r_{t-1}=b_{t-1} A v_{t-1}$.
- For the final reproductive size (on day k), just sum up all the increments:

$$
\begin{aligned}
& R_{k+1}=\sum_{u=1}^{k} b_{u} A v_{u} \\
& =\sum_{u=1}^{k}\left[b_{u} A v_{1} \prod_{u=1}^{t-1}\left(1+\left(1-b_{u}\right) L\right)\right]
\end{aligned}
$$

What to do with all that

- It'd be nice to find a sequence of b 's that maximizes final reproductive size. Then we could go out and see whether real plants have optimal allocation schedules.
- Unfortunately, the math to do that is too hard. So, let's look at an easier problem: if you know the b 's for every day except for one, what b for that day maximizes final reproductive size?
- Differentiate the fecundity function (i.e., R_{k+1}, above) with respect to b_{t}, and find what b_{t} gives a zero derivative.
- The derivative function turns out to be a straight line. The line doesn't intersect the b_{t}-axis anywhere in $0 \leq b_{t} \leq 1$. The slope is positive when t is small, negative when t is large.

- Thus the bang-bang allocation schedule.

What do we think about that?

- How general is the model? What range of real-life situations does it cover?
- What silly assumptions does it make?
- How might we improve it?
- Do these improvements change the generality of the model?

What is a model, anyway?

- We claim to be interested in plants, but all we're doing is manipulating equations.
- We left out all sorts of things, and completely fabricated others.
- That's science? Changing the subject and making things up??
generality

Any model can do two of these things well, but none can do all three.

■ 0.8-1
■ 0.6-0.8

- 0.4-0.6
- 0.2-0.4

0-0.2

